p-group, metabelian, nilpotent (class 4), monomial
Aliases: C23.2D4, (C2×C4).2D4, C22⋊C4⋊2C4, (C22×C4)⋊2C4, C4.D4.C2, C23⋊C4.1C2, C23.2(C2×C4), C2.7(C23⋊C4), (C2×D4).2C22, C22.D4.1C2, C22.10(C22⋊C4), SmallGroup(64,33)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.D4
G = < a,b,c,d,e | a2=b2=c2=1, d4=c, e2=a, ab=ba, ac=ca, dad-1=abc, ae=ea, dbd-1=ebe-1=bc=cb, cd=dc, ce=ec, ede-1=ad3 >
Character table of C23.D4
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | |
size | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -i | i | 1 | i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | i | -i | -1 | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | i | -i | 1 | -i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -i | i | -1 | -i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ12 | 4 | -4 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ13 | 4 | -4 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 3)(2 8)(4 6)(5 7)(9 11)(10 12)(13 15)(14 16)
(2 6)(4 8)(9 13)(11 15)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 15 3 13)(2 12 8 10)(4 14 6 16)(5 11 7 9)
G:=sub<Sym(16)| (1,3)(2,8)(4,6)(5,7)(9,11)(10,12)(13,15)(14,16), (2,6)(4,8)(9,13)(11,15), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,15,3,13)(2,12,8,10)(4,14,6,16)(5,11,7,9)>;
G:=Group( (1,3)(2,8)(4,6)(5,7)(9,11)(10,12)(13,15)(14,16), (2,6)(4,8)(9,13)(11,15), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,15,3,13)(2,12,8,10)(4,14,6,16)(5,11,7,9) );
G=PermutationGroup([[(1,3),(2,8),(4,6),(5,7),(9,11),(10,12),(13,15),(14,16)], [(2,6),(4,8),(9,13),(11,15)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,15,3,13),(2,12,8,10),(4,14,6,16),(5,11,7,9)]])
G:=TransitiveGroup(16,140);
(2 10)(3 7)(4 16)(6 14)(8 12)(11 15)
(1 13)(2 10)(3 15)(4 12)(5 9)(6 14)(7 11)(8 16)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(2 16 10 4)(3 15 7 11)(6 12 14 8)(9 13)
G:=sub<Sym(16)| (2,10)(3,7)(4,16)(6,14)(8,12)(11,15), (1,13)(2,10)(3,15)(4,12)(5,9)(6,14)(7,11)(8,16), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,16,10,4)(3,15,7,11)(6,12,14,8)(9,13)>;
G:=Group( (2,10)(3,7)(4,16)(6,14)(8,12)(11,15), (1,13)(2,10)(3,15)(4,12)(5,9)(6,14)(7,11)(8,16), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,16,10,4)(3,15,7,11)(6,12,14,8)(9,13) );
G=PermutationGroup([[(2,10),(3,7),(4,16),(6,14),(8,12),(11,15)], [(1,13),(2,10),(3,15),(4,12),(5,9),(6,14),(7,11),(8,16)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(2,16,10,4),(3,15,7,11),(6,12,14,8),(9,13)]])
G:=TransitiveGroup(16,148);
(1 9)(2 10)(3 15)(4 16)(5 13)(6 14)(7 11)(8 12)
(1 5)(3 7)(9 13)(11 15)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 4 9 16)(2 11 10 7)(3 6 15 14)(5 8 13 12)
G:=sub<Sym(16)| (1,9)(2,10)(3,15)(4,16)(5,13)(6,14)(7,11)(8,12), (1,5)(3,7)(9,13)(11,15), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,4,9,16)(2,11,10,7)(3,6,15,14)(5,8,13,12)>;
G:=Group( (1,9)(2,10)(3,15)(4,16)(5,13)(6,14)(7,11)(8,12), (1,5)(3,7)(9,13)(11,15), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,4,9,16)(2,11,10,7)(3,6,15,14)(5,8,13,12) );
G=PermutationGroup([[(1,9),(2,10),(3,15),(4,16),(5,13),(6,14),(7,11),(8,12)], [(1,5),(3,7),(9,13),(11,15)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,4,9,16),(2,11,10,7),(3,6,15,14),(5,8,13,12)]])
G:=TransitiveGroup(16,153);
(2 6)(3 7)(9 13)(12 16)
(2 6)(4 8)(10 14)(12 16)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 14)(2 13 6 9)(3 12 7 16)(4 15)(5 10)(8 11)
G:=sub<Sym(16)| (2,6)(3,7)(9,13)(12,16), (2,6)(4,8)(10,14)(12,16), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,14)(2,13,6,9)(3,12,7,16)(4,15)(5,10)(8,11)>;
G:=Group( (2,6)(3,7)(9,13)(12,16), (2,6)(4,8)(10,14)(12,16), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,14)(2,13,6,9)(3,12,7,16)(4,15)(5,10)(8,11) );
G=PermutationGroup([[(2,6),(3,7),(9,13),(12,16)], [(2,6),(4,8),(10,14),(12,16)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,14),(2,13,6,9),(3,12,7,16),(4,15),(5,10),(8,11)]])
G:=TransitiveGroup(16,160);
C23.D4 is a maximal subgroup of
C42⋊4D4 C42⋊6D4 C42.14D4 C22⋊C4⋊F5 (C22×C4)⋊F5
(C2×D4).D2p: C4○C2≀C4 C24.36D4 C23.(C2×D4) C42.13D4 (C2×D4).D6 C23.4D12 (C22×C12)⋊C4 (C2×C20).D4 ...
C23.D4 is a maximal quotient of
C23.15M4(2) C23.2M4(2) C24.4D4 (C2×C4).Q16 C22⋊C4⋊F5 (C22×C4)⋊F5
C23.D4p: C23.4D8 C23.4D12 C23.4D20 C23.4D28 ...
(C2×C4).D4p: (C2×C4).D8 (C2×D4).D6 (C2×C20).D4 (C2×C28).D4 ...
(C2×D4).D2p: C24.5D4 (C22×C12)⋊C4 (C22×C20)⋊C4 (C22×C28)⋊C4 ...
Matrix representation of C23.D4 ►in GL4(𝔽5) generated by
0 | 0 | 0 | 1 |
0 | 0 | 3 | 0 |
0 | 2 | 0 | 0 |
1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
0 | 2 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 3 |
0 | 0 | 1 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 0 | 4 |
3 | 0 | 0 | 0 |
0 | 0 | 2 | 0 |
G:=sub<GL(4,GF(5))| [0,0,0,1,0,0,2,0,0,3,0,0,1,0,0,0],[1,0,0,0,0,4,0,0,0,0,4,0,0,0,0,1],[4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[0,1,0,0,2,0,0,0,0,0,0,1,0,0,3,0],[0,0,3,0,4,0,0,0,0,0,0,2,0,4,0,0] >;
C23.D4 in GAP, Magma, Sage, TeX
C_2^3.D_4
% in TeX
G:=Group("C2^3.D4");
// GroupNames label
G:=SmallGroup(64,33);
// by ID
G=gap.SmallGroup(64,33);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,-2,48,73,199,362,297,255,1444]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^4=c,e^2=a,a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c,a*e=e*a,d*b*d^-1=e*b*e^-1=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*d^3>;
// generators/relations
Export
Subgroup lattice of C23.D4 in TeX
Character table of C23.D4 in TeX